Properties of Logarithms

Properties of Logarithms

If *b* is a positive real number then the following relationships exist:

- 1. $log_{b}1 = 0$
- 2. $log_b b = 1$
- 3. $log_b b^x = x$
- 4. $b^{\log_b x} = x$ for x > 0 (Why do we have the limitation x > 0?)
- 5. $log_{b}(MN) = log_{b}M + log_{b}N$ for M > 0 and N > 0
- 6. $log_{b}(\frac{M}{N}) = log_{b}M log_{b}N$ for M > 0 and N > 0
- 7. $log_{b}(M^{p}) = p log_{b}M$ for M > 0

Simplify the following logarithmic expressions without using a calculator:

$$log_{_2} 8\sqrt{2}$$

$$log_{5}$$
 $\frac{\sqrt[3]{5}}{25}$

$$log_{_{9}}3 + log_{_{9}}27$$

$$e^{-4\ln 2+\ln 3}$$

Use the properties of logarithms to write the following as a logarithm of a single quantity:

 $4 \log_2{(xy^2)} + 2 \log_2{\left(rac{1}{x}
ight)} - 4 \log_2{y}$

 $ln\,7\,+6\,ln\,x-6\,ln\,y$

Expand the following logarithms:

 $log_{5}(50x+25y)$

 $log_2(8x^2 + 80x + 200)$

 $log(log(10000^{250x}))$

The Change of Base Formula:

If b, c, and x are positive real numbers then:

$$log_{b}x = \frac{log_{c}x}{log_{c}b}$$

Give a 4 decimal approximation for $log_3 20$.

Give a four decimal approximate for the number $log_{\frac{1}{7}}(0.719)$

On your calculator, graph the function $f(x) = 2 - \log_3(x+1)$

The **pH** of a solution is defined to be $-log([H_3O^+])$, where $[H_3O^+]$ is the concentration of hydronium ions in moles/liter. Solutions with a pH less than 7 are said to be *acidic*, while those with a pH greater than 7 are *basic*.

Example: If a sample of a solution has a $[H_3O^+]$ concentration of 7.49×10^{-6} moles/liter. What is the pH?

If I_0 is the minimum discernable intensity of an earthquake, then an earthquake with an intensity of I has a **Richter Scale** ranking of: $R = log\left(\frac{I}{I_0}\right)$

If I_0 is the minimum discernable intensity of a sound, then a sound with an intensity of I has a **decibel level** of:

$$D = 10 \log\left(\frac{I}{I_0}\right)$$

Example:

Given that $I_0 = 10^{-12}$ watts/meter². What is the intensity of a sound for which the decibel level is 102?